On Dual-Complex Numbers with Generalized Fibonacci and Lucas Numbers Coefficients
نویسندگان
چکیده
منابع مشابه
ON THE GENERALIZED ORDER-k FIBONACCI AND LUCAS NUMBERS
In this paper we consider the generalized order-k Fibonacci and Lucas numbers. We give the generalized Binet formula, combinatorial representation and some relations involving the generalized order-k Fibonacci and Lucas numbers.
متن کاملSums of products of generalized Fibonacci and Lucas numbers
In this paper, we establish several formulae for sums and alternating sums of products of generalized Fibonacci and Lucas numbers. In particular, we recover and extend all results of Z. Čerin [2, 2005] and Z. Čerin and G. M. Gianella [3, 2006], more easily.
متن کاملNegativity Subscripted Fibonacci And Lucas Numbers And Their Complex Factorizations
In this paper, we nd families of (0; 1; 1) tridiagonal matrices whose determinants and permanents equal to the negatively subscripted Fibonacci and Lucas numbers. Also we give complex factorizations of these numbers by the rst and second kinds of Chebyshev polynomials. 1. Introduction The well-known Fibonacci sequence, fFng ; is de ned by the recurrence relation, for n 2 Fn+1 = Fn + Fn 1 (1.1...
متن کاملTrigonometric Expressions for Fibonacci and Lucas Numbers
The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas numbers. Not only these numbers are popular in expository literature because of their beautiful properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to use a certain polynomial identity to express these numbers in terms of trigonometric functions. It is in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Sciences and Applications E-Notes
سال: 2020
ISSN: 2147-6268
DOI: 10.36753/mathenot.621602